Семейная стоматология

Решаем проблемы зубов

Экстренная помощь при острой зубной боли

вне очереди!

Запишитесь на прием по телефону

Кингисепп, Крикковское шоссе 20

Проводниковая и рефлекторная функция спинного мозга

Описание: В чем заключается проводящая функция спинного мозга? Хотя ответ на вопрос знает почти каждый школьник, но вот обычный человек вряд ли сможет сразу ответить. Его проводящая функция проста – это трансляция нервного сигнала. Именно из-за этой особенности НС человек являет собою единую систему.

А чтобы обеспечить контроль над функциями органов, возможность передвижения, своевременную передачу или получение рефлекторных, симпатических импульсов, нужны проводящие пути. Сбои в передаче импульсов влекут за собою серьёзные нарушения в работе организма.

Как выглядит спинной мозг

Как выглядит спинной мозг, знает не каждый. Более того, не все люди имеют представление о том, какова его роль в жизни каждого человека. В связи с этим стоит восполнить этот пробел в знании. К тому же многие ошибочно полагают, что головной и спинной мозг – это отдельные части.

Чтобы выяснить, для чего нужная рефлекторная функция спинного мозга, попробуем определить, как он выглядит. Однозначно понять, где начинается и где заканчивается спинной мозг, невозможно. Он начинается от первого позвонка чуть ниже черепа, плавно соединяясь с головным мозгом в этой области. Разделение на спинной и головной мозг носит формальный характер, в действительности же спинной мозг плавно переходит в головной. Таким образом, можно сделать вывод о том, что две эти части являются единым целым.

Двигательная кора

В проекционной двигательной коре реализован функ­циональный принцип соматотопической локализации: представительство мышц, осуществляющих наиболее сложные и значимые произвольные движения, занимает максимальную площадь. Это относится к мимической мускулатуре (мимика — средство биокоммуникации), мышцам языка, глотки, гортани (артикуляция — основа моторной речи), а также рук, в особенности пальцев ки­сти и самой кисти, представленных соответственно в нижней и средней частях проекционной моторной коры (рис. 1.2.2). Последняя занимает заднюю часть на­ружной поверхности лобной доли (прецентральная изви­лина). Кпереди от проекционной моторной коры распо­лагается премоторная кора, играющая важную роль в преформировании движений в действия, а кпереди от премоторной — префронтальная, ответственная за осу­ществление целостной деятельности. Премоторная кора также входит в состав экстрапирамидной системы. При овладении сложными моторными навыками они выпол­няются уже автоматически по программам, считывае­мым с премоторной коры.

Поражения проекционной моторной коры вызывают центральный паралич, премоторной — нарушения дейст­вия (праксиса), а префронтальной — деятельности. Пре­фронтальная кора имеет у человека также важное значе­ние в прямохождении, и ее поражение ведет к расстрой­ству стояния и ходьбы.

Категории: Нервная система Неврология

На этой странице материал по темам:

  • клетки беца их строение и функции

  • двусторонние кортиконуклеарные пути

  • кортиконуклеарный путь неврология

  • начало кортикоспинального пути

Расположение спинного мозга и его оболочки

Головной мозг защищает черепная коробка, а спинной спрятан в позвоночнике и окружен тремя оболочками. Первая из них является самой нежной, тонкой и мягкой. В ней спрятаны кровеносные сосуды, которые доставляют питательные вещества к головному мозгу. Иными словами, спинной мозг является своего рода «курьером» по доставке питания.

Продолжая говорить о том, как работает рефлекторная функция спинного мозга, нельзя пройти стороной разбор строения второй паутиной оболочки. Здесь присутствует особое пространство, которое называется субарахноидальным. По всей длине позвоночника оно заполнено спинномозговой жидкостью (ликвором). Именно ее и берут в ходе пунктирования на анализ с целью определить состояние работоспособности спинного мозга.

Последняя оболочка расположена снаружи и имеет более твердую поверхность, что позволяет ей обеспечивать защитные функции от разного рода внешних повреждений.

Характеристики спинного мозга

У взрослых людей спинной мозг в длину достигает 45 см при толщине 1,5 см. Вес его по самым скромным меркам составляет не более 35 грамм. Весь мозг поделен на несколько отделов, от которых отходят различные корешки:

  • шейный;
  • грудной;
  • поясничный;
  • крестовый;
  • копчиковый.

Так как осуществляется рефлекторная функция спинного мозга, шейная и пояснично-крестцовая область являются наиболее важными отделами позвоночника. В связи с этим они лучшим образом защищены – сама природа позаботилась об этом, сделав их существенно толще и плотнее. Именно в этих местах находятся важные нервные окончания, поражение которых грозит серьезными последствиями. В шейном отделе располагается скопление корешков, отвечающих за движение рук. Корешки нижнего отдела ответственны за движение нижних конечностей.

image

Человеческий спинной мозг контролирует деятельность всех внутренних органов. Каждый из них связан с каким-либо конкретным отделом. К тому же весь спинномозговой канал разбит на сегменты и каждый из перечисленных отделов имеет свое количество. В шейном их 8, в грудном – 12, в поясничном и крестцовом по 5, а в копчиковом их насчитывается один или два.

Можно ли восстановить проводимость?

Терапия при непроводимости нацелена на пресечение отмирания нервов и на ликвидацию причин, спровоцировавших патологию.

Терапия медикаментами

Этот тип лечения сводится к назначению лекарств, противодействующих отмиранию клеточек мозга, а также обеспечивает кровоток к повреждённой области мозга спины. В процессе такой терапии берётся во внимание специфика проводящей функции мозга, что связана с возрастом пациента, а также серьёзностью болезни либо травмы. С целью стимуляции клеток нервов назначается терапия с помощью электрических импульсов, способствующих поддержке тонуса мышц.

Хирургия

Операция, проводимая для возобновления проводимости, преследует 2 цели:

  • устранить факторы, провоцирующие парализацию работы нейронных связей;
  • это стимуляция мозга для восстановления утраченных функций.

Как правило, перед проведением вмешательства доктора проводят обследование организма для выявления места расположения процесса дегенерации. Поскольку список путей весьма велик, нейрохирург пытается сузить область поиска при помощи диагностики. В случае тяжёлых травм очень важно вскоре убрать причины возникшей компрессии позвоночника.

Народная медицина

Средства такой медицины при патологии проводимости импульса следует использовать с осторожностью, чтобы не спровоцировать ухудшение состояния больного. Зачастую при такой проблеме применяется:

  • апитерапия;
  • траволечение;
  • гирудотерапия.

Апитерапия является лечением укусами пчёл, что способствует восстановлению эфферентных путей, в частности, когда патология спровоцирована растущей грыжей, радикулитом или другими схожими недугами. У яда пчёл есть ещё одна полезная особенность — она обеспечивает приток крови к проблемной зоне. В случае с траволечением подойдут сборы лекарственных растений, улучшающие метаболизм, помогающие нормализации кровотока. Гирудотерапия, что предполагает применение пиявок, способствует устранению застойных явлений, что неизбежны при проблемах в структуре позвоночника.

Полное восстановление нейронных связей после серьёзного травматизма – задача вовсе не простая. Очень многое зависит от незамедлительного обращения к медикам и своевременной помощи квалифицированного нейрохирурга. Но важно не забывать: чем больше времени прошло с момента начала дегенеративных изменений, тем меньше шансов на возобновление функциональных возможностей спинного мозга.

Серое вещество

Серое вещество или substantia grisea представлено несколькими столбами, соединенными друг с другом двумя пластинками (передней и нижней), называемых спайками. На срезе одного из таких столбов можно увидеть, что серое вещество по своей форме напоминает бабочку с расправленными крыльями или латинскую букву H.

Помимо этого, можно также заметить, что от вещества отходят выступы, которые иначе называются рогами. Они могут быть как передними, расположенными на передней стенке, так и задними, идущими вдоль задней стенки. И первые и вторые парные, причем имеют узкую и широкую форму. Но помимо задних и передних есть еще и боковые рога, в которых заключены центры вегетативной нервной системы.

В чем заключается рефлекторная функция спинного мозга? Дело в том, что в передних рогах находится особая разновидность двигательных нейронов, отростки которых образуют нервные корешки.

Посередине серого вещества проходит центральный канал, который также заполнен ликвором. В верхней части канал соединен с желудочками головного мозга. При этом все разделы: желудочки, центральный канал и субарахноидальное пространство принимают активное участие в циркуляции спинномозговой жидкости.

Белое вещество

Белое вещество – substantia alba, обволакивает серое, формируется совокупностью нервных волокон, которые тоже бывают трех типов:

  • передние;
  • задние;
  • боковые.

При этом все корешки имеют разное направление, и некоторая часть из них связана напрямую с головным мозгом и центральной нервной системой (далее просто ЦНС). И если рефлекторная функция спинного мозга заключается в передаче сигналов двигательных нейронов серого вещества, то задача нейронов белого вещества – это оперативная доставка импульсов мышц и суставов к продолговатому мозгу. Таким образом, реализуется передача всех команд вдоль всего спинного мозга.

Здесь же находятся пути, по которым передаются все сведения касательно чувствительности и болевых ощущений. Только перед тем, как поступить в кору головного мозга, информация прежде достигает промежуточного мозга, и лишь потом устремляется дальше в пункт назначения.

Тема 16. Проводящие пути ЦНС.

Предыдущая14Следующая

В нервной системе импульсы, возникающие при воздействии на рецепторы, передаются по отросткам с нейрона на нейрон. Импульсы передаются только в одном направлении – от рецептора через вставочный нейрон к эфференту, что обусловлено морфофункциональными особенностями синапсов, которые проводят возбуждение только от пресинаптической мембраны к постсинаптической.

Проводящие пути

– это совокупность нервных волокон, проходящих в определенных зонах белого вещества головного и спинного мозга, объединенных общностью морфологического строения и функции.

В спинном и головном мозге выделяют по строению и функции три группы проводящих путей.

Рис. 1. Типы проводящих путей центральной нервной системы.

1 — ассоциативные проводящие пути, 2 — комиссуральные проводящие пути, 3 — проекционные проводящие пути.

Ассоциативные пути

соединяют участки серого вещества, различные функциональные центры (кора мозга, ядра) в пределах одной половины мозга. Выделяют короткие и длинные ассоциативные волокна. Короткие волокна соединяют близлежащие участки серого вещества и располагаются в пределах одной доли мозга – внутридолевые пучки волокон. Длинные ассоциативные волокна связывают участки серого вещества, расположенные на значительном расстоянии друг от друга, обычно в различных зонах. К ним относятся верхний продолговатый пучок, соединяющий кору лобной доли с теменной и затылочной, нижний продолговатый пучок, связывающий серое вещество височной доли с затылочной долей. В спинном мозге ассоциативные волокна связывают между собой нейроны, расположенные в различных сегментах. Они образуют собственные пучки спинного мозга (межсегментарные пучки), которые располагаются вблизи серого вещества. Короткие пучки перекидываются через 2-3 сегмента, а длинные пучки соединяют далеко расположенные сегменты спинного мозга.

Комиссуральные

(спаечные) нервные волокна связывают нервные центры правого и левого полушария большого мозга, образуют мозолистое тело, спайку свода и переднюю спайку, т.е. комиссуральные волокна проходят из одного полушария в другое. В мозолистом теле располагаются волокна, соединяющие новые, более молодые отделы мозга. В белом веществе полушарий волокна мозолистого тела расходятся веерообразно, образуя лучистость мозолистого тела. В спинном мозге комиссуральные пути образованы волокнами, переходящими с одной стороны спинного мозга на другую (волокна спиноталамического пучка и др.).

Проекционные волокна

соединяют нижележащие отделы с базальными ядрами и корой, и, наоборот, кору головного мозга, базальные ядра с ядрами мозгового ствола и со спинным мозгом. При помощи проекционных нервных волокон, достигающих кору большого мозга, картины внешнего мира как бы проецируются на кору, как на экран, где происходит высший анализ поступивших импульсов и сознательная их оценка.

Выделяют проекционные восходящие и нисходящие

пути. Восходящие (афферентные, чувствительные) несут импульсы, идущие от органов чувств, опорно-двигательного аппарата, внутренних органов и сосудов в головной мозг, к его подкорковым и высшим центрам. По характеру проводимых импульсов восходящие проекционные пути делят на 3 группы:

1) экстерорецептивные пути

– импульсы поступают от органов чувств (зрения, слуха, вкуса, обоняния), кожных покровов (болевые, температурные, осязания, давления);

2) проприорецептивные пути

– импульсы поступают от органов движения, несут информацию о положении частей тела, о размахе движений;

3) интерорецептивные пути

– импульсы поступают от внутренних органов, сосудов (хемо-, баро-, механорецепторы).

Экстерорецептивные проводящие

пути.

Все восходящие пути состоят из 3 нейронов:

I нейроны

начинаются в органах чувств и заканчиваются в спинном мозге или в стволовой части мозга, тела их располагаются в ганглиях.

II нейроны

располагаются в ядрах спинного или головного мозга и заканчиваются в ядрах таламуса, гипоталамуса. Эти нейроны образуют центростремительные восходящие пути.

III нейроны

лежат в ядрах промежуточного мозга, для кожной и мышечно-суставной чувствительности – в ядрах таламуса, для зрительных импульсов — в коленчатом теле, для обонятельных импульсов – в сосцевидных телах. Отростки нейронов заканчиваются на клетках соответствующих корковых центров (зрительной, слуховой, обонятельной и общей чувствительности).

Проводящие пути болевой и температурной чувствительности образуют латеральный спинно-таламический путь

. Рецепторы первого (чувствительного) нейрона пути болевой и температурной чувствительности, воспринимающего раздражения, располагаются в коже и на слизистой оболочке, а его тело лежит в спинномозговых узлах; центральный же отросток идет в составе заднего корешка в задний рог спинного мозга. Аксон второго нейрона, тело которого лежит в заднем роге, направляется на противоположную сторону спинного мозга. Через его переднюю серую спайку аксон входит в боковой канатик, где включается в состав латерального спинно-таламического пути, который поднимается до продолговатого мозга. Пучок располагается позади оливы, проходит в покрышку моста и покрышку среднего мозга. Аксоны заканчиваются, образуя синапсы на клетках, расположенных в таламусе (III нейрон). Аксоны III нейрона достигают коры полушария, его постцентральной извилины (IV слой коры), где находится корковый конец общей чувствительности. Импульсы от кожных рецепторов (рецепторы, воспринимающие чувство давления и осязания) поступают к клеткам коры в постцентральную извилину – место общей чувствительности.

Рис. 2. Передний и латеральный спинно-таламические пути.

Проводящие пути специализированной чувствительности

Вестибулярный (статокинетический) путь.

Вместе с кожным, зрительным и двигательным анализаторами вестибулярный анализатор обеспечивает поддержание равновесия при разнообразных движениях и участвует в ориентировочных реакциях организма в пространстве (анализатор равновесия и гравитации). Путь начинается от рецепторов статокинетического анализатора, затем импульсы поступают к вестибулярному ганглию преддверно-улиткового нерва (1 нейроны); далее в составе преддверно-улиткового нерва они направляются к вестибулярным ядрам (2 нейроны); затем в составе бульбарно-таламического тракта проходят до таламуса, заканчиваясь на его центральных ядрах (3 нейроны). Аксоны центральных ядер таламуса направляются через заднюю ножку внутренней капсулы в корковую часть вестибулярного анализатора — кора полушарий средней и нижней височных извилин (4 нейроны). Следует обратить внимание, что аксоны вестибулярных ядер также формируют преддверно-спинномозговой путь ипреддверно-мозжечковый путь.

Рис. 3. Проводящие пути импульсов вестибулярной чувствительности. 1 — кора теменной доли мозга; 2 — таламус; 3 — медиальное ядро вестибулярного нерва; 4 — ядро глазодвигательного нерва; 5 — верхняя мозжечковая ножка; 6 — верхнее вестибулярное ядро; 7 — зубчатое ядро; 8 — ядро шатра; 9 — преддверная часть преддверно-улиткового нерва (VIII ) ; 10 — вестибулярный узел ; 11 — преддверно-спинномозговой путь (передний канатик спинного мозга); 12 — нижнее вестибулярное ядро; 13 — промежуточное и ядро медиального продольного пучка; 14 — латеральное вестибулярное ядро; 15 — медиальный продольный пучок; 16 — ядро отводящего нерва; 17 — клетки ретикулярной формации ствола мозга; 18 — красное ядро; 19 — кора височной доли мозга

Слуховой путь

обеспечивает проведение импульсов до подкорковых и корковых центров, участвуя в обеспечении ответных реакций на звуковые раздражения. От рецепторов (волосковые клетки Кортиева органа внутреннего уха) импульсы поступают к клеткам спирального ганглия(1 нейроны) преддверно-улиткового нерва, центральные отростки биполярных нейронов этого ганглияобразуют направляется к кохлеарным ядрампреддверно-улиткового нерва (2 нейроны). Аксоны вторых нейроноввыходят на дорсальную поверхность моста, образуя мозговые (слуховые) полоски четвертого желудочка, проходят в составе трапециевидного тела к его ядрампротивоположной стороны. Аксоны ядер трапециевидного тела (3 нейроны) в составе слуховой петли направляются к подкорковым центрам: нижние холмики среднего мозга, медиальные коленчатые тела, срединные ядра таламуса (4 нейроны). Далее:

а) от нижних холмиков среднего мозга информация проводится к верхним холмикам, обеспечивая ответную реакцию на неожиданные слуховые раздражители;

б) от срединных ядер таламуса импульсы поступают на медиальные ядра, которые являются подкорковым чувствительным центром экстрапирамидной системы;

в) от ядер медиальных коленчатых тел слуховая информация проходит через заднюю ножку внутренней капсулы и затем направляется в среднюю часть верхней височной извилины — проекционный центр слуха (5 нейроны).

Рис. 4. Упрощенная схема проводящих путей слуховой сенсорной системы. 1 — верхняя височная извилина; 2 — медиальное коленчатое тело; 3 — нижний холмик пластинки крыши среднего мозга; 4 — латеральная петля; 5 — заднее ядро улиткового нерва; 6 — трапециевидное тело; 7 — переднее ядро улиткового нерва; 8 — улитковая часть преддверно-улиткового нерва; 9 — клетки спиралевидного узла.

Зрительный путь

обеспечивает проведение световых импульсов от сетчатки до подкорковых и корковых центров, участвуя в обеспечении ответных реакций на зрительные раздражения. От палочек и колбочек, которые находятся в девятом слое сетчатки, импульсы поступают на периферические отростки биполярных клеток сетчатки (1 нейроны); центральные отростки биполярных клеток заканчиваются на ганглиозных нервных клетках сетчатки (2 нейроны), аксоны ганглиозных клеток формируют зрительный нерв, который направляется к зрительному перекресту, где перекрещиваются 2/3 нервных волокон, расположенных медиально (от внутренних отделов сетчатки), несущих информацию с латеральных сторон зрительного поля; неперекрещенная 1/3 волокон направляется в зрительный тракт своей стороны (от латеральных отделов сетчатки); она несет информацию от медиальных сторон зрительного поля; зрительный перекрест продолжается в зрительный тракт, который проводит импульсы к подкорковым центрам зрения (3 нейроны). От верхних холмиков импульсы поступают для обеспечения зрачкового рефлекса (изменение ширины зрачка при различном освещении); часть аксонов верхнего холмика направляется в интеграционный центр среднего мозга, который располагается также в верхнем холмике, гдеобеспечивается ответная реакция на неожиданные зрительные раздражители. От нейронов задних ядер таламуса импульсы поступают на медиальные ядра таламуса, которые являются подкорковым чувствительным центром экстрапирамидной системы, которые обеспечивают изменение тонуса мускулатуры в ответ на зрительные раздражения;

От латеральных коленчатых тел зрительная информация проходит через заднюю ножку внутренней капсулы и затем в виде направляется к шпорной борозде, где располагается проекционный центр зрения (4 нейроны).

Рис. 5. Упрощенная схема зрительных проводящих путей.

Вкусовой путь

обеспечивает проведение импульсов от вкусовых сосочков до подкорковых и корковых центров, участвуя в обеспечении ответных реакций на вкусовые раздражения. От вкусовых клеток импульсы поступают к чувствительным ганглиям черепных нервов (1 нейроны)лицевого нерва от передних 2/3 языка; языкоглоточного нерва от задней 1/3 языка; блуждающего нерва от вкусовых рецепторов глотки, надгортанника, неба. Импульсы от указанных узлов следуют к ядру одиночного пути(2 нейроны). Аксоны клеток ядра одиночного пути переходят на противоположную сторону и следуют к ядрам таламуса (3 нейроны), аксоны третьих направляются в крючок и парагиппокампальную извилину — проекционный центр вкуса. Часть аксонов базальных ядер таламуса направляется в медиальные ядра таламуса — чувствительный интеграционный центр экстрапирамидной системы, который в ответ на вкусовые раздражения обеспечивает изменение тонуса мышц.

Рис. 6 . Проводящие путивкусовогоанализатора: 1 — таламус; 2 — ганглий тройничного нерва; 3 — промежуточный нерв; 4 — надгортанник; 5 — ганглий блуждающего нерва; 6 — ганглий языкоглоточного нерва; 7 — клетка узла коленца; 8 — вкусовое ядро (ядро одиночного пути); 9 — бульботаламический тракт; 10 — парагиппокампова извилина и крючок.

Обонятельный путь

служит для проведения импульсов от обонятельных луковиц полости носа до подкорковых и корковых центров, участвуя в обеспечении ответных реакций на различные запахи. Рецепторами обоняния являются разветвления периферических отростков биполярных клеток (1 нейроны) слизистой оболочки полости носа. Центральные отростки рецепторных клеток образуют обонятельные нервы , которые проникают в полость черепа к митральным клеткам обонятельных луковиц(2 нейроны). Аксоны митральных клеток проходят в составе обонятельного трактаи вблизи обонятельного треугольника распадаются на три пучка:

а) волокна медиального пучка направляются через переднюю спайку мозга в обонятельный тракт противоположной стороны к митральным клеткам обонятельной луковицы;

б) волокна промежуточного пучка направляются к нейронам обонятельного треугольника, переднего продырявленного вещества и нейронам ядер прозрачной перегородки своей и, частично, противоположной сторон;

в) волокна латерального пучка направляются к крючку и парагиппокампальной извилине — в проекционный центр обоняния. В подкорковые центры обоняния нервные импульсы поступают из проекционного центра обоняния. Важной особенностью обонятельного пути является то, что нервные импульсы первоначально поступают в кору полушарий большого мозга,

и только затем — в подкорковые центры обоняния.

Рис. 7. Схема проводящего пути обонятельного анализатора: 1 — обонятельные клетки; 2 — обонятельные нити; 3 — обонятельная луковица; 4 — обонятельный треугольник; 5 — мозолистое тело; 6 — клетки коры парагиппокампальной извилины

Проприорецептивные проводящие пути

.

Рецепторы I нейрона располагаются в мышцах, сухожилиях, связках, суставных капсулах. Тело I нейрона – в спинномозговом узле, их аксоны в составе заднего корешка, не входя в задний рог, направляются в задний канатик, а затем уходят в продолговатый мозг к тонкому и клиновидному ядрам, где заканчиваются синапсами на телах II нейронов. Аксоны II нейронов, выходящие из этих ядер, переходят на противоположную сторону, образуя медиальную петлю, проходят через покрышку моста и покрышку среднего мозга и заканчиваются в таламусе на телах третьих нейронов. Аксоны III нейронов направляются в кору постцентральной извилины, где заканчиваются в IVслое коры.

Другая часть волокон III нейронов на выходе из тонкого и клиновидного ядер направляется в нижнюю мозжечковую ножку и заканчивается в коре червя. Третья часть волокон переходит на противоположную сторону, направляется через нижнюю мозжечковую ножку к коре червя противоположной стороны.

Рис. 8. Схема спинно-мозжечкового переднего и заднего, оливоспинномозгового, преддверно-мозжечкового, височно-мостового, мостомозжечкового, ретикуло-мозжечкового, мозжечково-красноядерного, красноядерно-спинномозгового, таламокоркового проводящих путей (по Сентаготаи).1 — спинно-мозговой ганглий; 2 — передний спинно-мозжечковый путь; 3 — задний спинно-мозжечковый путь; 4 — кортико-мостовой и мосто-мозжечковый пути; 5 — вестибуломозжечковый путь; 6 — оливомозжечковый путь; 7 — ретикуломозжечковый путь; 8 — красное ядро; 9 — пирамидный путь; 10 — олива; 11 — n. dorsalis; 12 — парацентральная долька; 13 — мозжечок; 14 — руброспинальный путь; 15 — средний мозг; 16 — мост; 17 — продолговатый мозг; 18 — спинной мозг.

Кора (при участии сознания) управляет двигательными функциями организма непосредственно через пирамидные пути

(произвольные движения). Пирамидным путь называется потому, что свое начало он берет от больших пирамидных клеток коры. Нисходящий пирамидный путь является эфферентным.

Пирамидные пути

имеют двухнейронное строение. Первые нейроны – это большие пирамидные клетки, расположенные в двигательной зоне коры. Вторые нейроны входят в состав двигательных ядер черепных нервов в стволе головного мозга и двигательных ядер передних рогов спинного мозга. Они называются периферическими мотонейронами.

К пирамидным путям относятся главный двигательный, пирамидный

, и корково-ядерный . Главный двигательный путь проводит двигательные волевые импульсы к мышцам туловища и конечностей. Начавшись от пирамидных клеток коры средней и верхней частей предцентральной извилины, волокна пирамидного пути идут в составе лучистого венца, а затем проходят через внутреннюю капсулу, занимая передние две трети ее задней ножки, причем волокна для верхней конечности идут спереди волокон для нижней конечности. Далее они проходят через ножку мозга, а оттуда через мост в продолговатый мозг и затем к двигательным ядрам передних рогов спинного мозга, а от них к скелетным мышцам. В зависимости от направления и расположения волокон пирамидный путь делится латеральный и передний корково-спинномозговой.

Корково-ядерный путь

начинается от клеток, залегающих в нижней трети предцентральной извилины, и проходит через колено внутренней капсулы. Волокна этого пути переходят на противоположную сторону, к двигательным ядрам черепных нервов: III и IV пар – в среднем мозге, V, VI, VII – в мосту, IХ, Х, ХI, ХII – в продолговатом мозге, где заканчиваются синапсами на их нейронах. Аксоны двигательных нейронов указанных ядер выходят из мозга в составе соответствующих черепных нервов и направляются к скелетным мышцам человека. Так как все двигательные волокна собраны на небольшом пространстве во внутренней капсуле (колено и передние две трети задней ножки ее), то при повреждении их в этом месте наблюдается односторонний паралич противоположной стороны тела.

Экстрапирамидные проводящие пути

образованы нисходящими проекционными нервными волокнами, по происхождению не относящимися к гигантским пирамидным клеткам коры больших полушарий мозга. Однако кора контролирует и управляет экстрапирамидной системой и является началом экстрапирамидных путей. Первичными центрами экстрапирамидной системы являются хвостатое и чечевицеобразное ядра полосатого тела, субталамическое ядро, красное ядро и черное вещество среднего мозга. Следующее звенья экстрапирамидных путей составляют ретикулярно-спинномозговой, красноядерно-спинномозговой, преддверно-спинномозговой и оливоспинномозговой пути, оканчивающиеся в передних столбах и промежуточном сером веществе спинного мозга. Экстрапирамидная система осуществляет непроизвольную регуляции и координацию движений, регуляцию мышечного тонуса, поддержание позы, организацию двигательных проявлений эмоций (смех, плач). Обеспечивает плавность движений, устанавливает исходную позу для их выполнения. При поражении экстрапирамидной системы нарушаются двигательные функции (например, могут возникнуть гиперкинезы, паркинсонизм), снижается мышечный тонус. Таким образом, проводящие пути головного и спинного мозга объединяют организм в одно целое, обеспечивают согласованность его действий.

Предыдущая14Следующая

Дата добавления: 2017-03-12; просмотров: 23392; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Похожие статьи:

Работа нашего мозга

За быструю и корректную работу нашего организма отвечают восходящие и нисходящие проводящие пути. Последние потоки сформированы при помощи красноядерных и латеральных путей. Именно благодаря этим путям осуществляются рефлекторная и проводниковая функции спинного мозга. Благодаря красноядерно-спинномозговым путям производятся непроизвольные двигательные импульсы. В то время как за произвольные импульсы отвечают латеральные корково-спинномозговые пути.

Все корешки снабжаются персональными венами и артериями, что в результате образует сосудисто-нервные пучки. Каждый такой пучок ответственен только за свой сегмент и работает в автономном режиме, анализируя поступающую информацию и передавая необходимые импульсы.

Поражение этих пучков приводит к серьезным патологическим и порой необратимым изменениям в организме человека. И чтобы специалисты могли определить, какой именно пучок оказался поврежденным, и локализовать болевые ощущения, необходимо провести целый комплекс исследований.

Рефлекторная функция

В нашем организме все продуманно до мелочей, и на каждый внешний раздражитель наш организм реагирует по-разному. Именно на рефлексах основан защитный механизм. Мы чихаем, кашляем, получаем ожоги, вздрагиваем от резкого звука или по-своему реагируем на порывы ветра. Это все примеры рефлекторной функции спинного мозга и подобные действия происходят вне нашего контроля.

Чтобы мы могли своевременно реагировать на любой раздражитель, включая и критические ситуации, по всей поверхности нашей кожи располагаются болевые рецепторы. Как яркий пример: прикоснувшись к горячему чайнику или любой поверхности, мы практически мгновенно отдергиваем руку. Скорость реакции настолько быстрая, что невозможно понять временные рамки. За доли секунды образуется рефлекторное кольцо, которое и заставляет мышцы сократиться.

Можно привести и другой частый случай. Стоит случайно глотнуть порцию дыма или втянуть носом пылевые взвеси, начнется чихание или кашель. Таким образом, стало понятно, что за столь короткое время информация была получена, обработана и наши «защитники» получили указания освободить организм от присутствия инородных тел.

Проводниковая функция

Итак, в чем выражается рефлекторная функция спинного мозга, теперь понятно, можно перейти к другой, тоже значимой задаче – проводниковой. Она заключается в передаче сигналов по восходящим путям в главный мозг. От него, в зависимости от ситуации, импульс по нисходящим путям направляется к какому-нибудь органу.

Проводниковая функция позволяет нам совершать осмысленные действия:

  • взять или бросить;
  • встать или сесть;
  • пойти медленно или побежать;
  • нарисовать;
  • отрезать.

Все эти действия мы совершаем в повседневной жизни: в быту либо на работе и обычно просто не замечаем.

Вся эта связь головного, спинного мозга, всей ЦНС, внутренних органов и всех конечностей делает человеческий организм уникальным по своей природе. Даже самый современный робот не может похвастать количеством тех движений, которые способен осуществить любой биоорганизм.

Последствия спинномозгового повреждения

Патологические изменения в функции проводимости способны привести к нарушению функциональности организма, появлению болей, недержанию мочи и т.д. В результате получения различных видов травм, спинномозговых заболеваний и пороков развития возможно снижение или полное прекращение проводимости нервных рецепторов.

При нарушении импульсной проводимости возникает парез нижних конечностей

Полное нарушение проводимости импульса может сопровождаться парализацией и потерей чувствительности конечностей. Кроме того, наблюдаются нарушения работы внутренних органов, за функциональность которых отвечают поврежденные нейроны. Например, при поражениях нижней спинномозговой части возможна самопроизвольная дефекация.

В зависимости от тяжести повреждения спинномозговых нервов после получения травмы или в результате заболевания, возможны следующие проявления:

Еще советуем:Миелопатия шейного отдела

  • развитие застойной пневмонии;
  • образование пролежней и трофических язв;
  • инфекции мочевыводящих путей;
  • синдром Спастика (патологическое сокращение парализованных мышц), сопровождающийся болью, тугоподвижностью конечности и образованием контрактур;
  • септическое заражение крови;
  • нарушение поведенческих реакций (дезориентация, пугливость, заторможенная реакция);
  • психологическое изменение, проявляющееся резкими колебаниями в настроении, депрессивным состоянием, беспричинным плачем (смехом), бессонницей и т.д.

Нарушение проводимости и рефлекторной деятельности наблюдается сразу после выявления дегенеративного патологического изменения. При этом происходит некроз нервных клеток, что приводит к ускоренному прогрессированию болезни, требующего незамедлительного лечения. Последствия такого состояния определяются тяжестью негативной симптоматики и тем, какие именно клетки были повреждены.

Ссылка на основную публикацию
Похожие публикации

Семейная стоматология

г. Кингисепп, 

Крикковское шоссе, д. 20

Запишитесь на прием по телефону

ООО «CЕМЕЙНАЯ СТОМАТОЛОГИЯ», ОГРН 1134707001021 ИНН 4707035559 КПП